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Approximate Solution of the Differential Equation 
y f ( x, y) with Spline Functions 

By G. Micula 

Abstract. An approximate spline is constructed for the solution of Cauchy's problem 
regarding a second-order differential equation. The existence, uniqueness and convergence 
of the approximate spline solution are investigated. 

1. Introduction. Let ((gnm Ck) be the class of spline functions with respect to the 
set of knots { xi 1. This class consists of piecewise-polynomial functions of degree m, 
smoothly connected in the knots, up to the derivatives of order k (k < m). 

We shall use spline functions of class ((rn, Cm- ) in approximating the solution of 
the Cauchy problem for y" = f(x, y). 

F. R. Loscalzo and T. D. Talbot ([3], [4]) made use of spline functions in approx- 
imating solution of the Cauchy problem for y' = f(x, y). In [6], Manabu Sakai 
approximated the solutions of two-point boundary value problems for the second- 
order equations by spline functions. Recently [5], the author studied the approximation 
of solutions of systems of differential equations by spline functions. 

For our purpose, we shall need consistency relations which hold for any spline 
functions of (em, C`m 1) with equidistant knots Xk = kh (k = 1, * * , n - 1). We have 

THEOREM 1. For any spline function E (em, Cm 1), m > 3, there are linear 
relations between the quantities B(kh), B'(kh); B(kh), B"(kh), k = 0, m - 1, given by 

m-1 m-1 
(1) E a(M)(kh) = h E- i '(kh), k ~~~kO k=O k=O 

m-1 m-1 
(2) Z C~m)l(kh) = h2 

rn-i 2: ~(h) 
' b (-~" (k h) 

k=O k=O 

with the coefficients 

(3) a = ( m - 1)! [Qm(k) Qm(k + 1)], 
(in) (4) Ck = (m - 1)! [Q.-1(k + 1) - 2Qm.1(k) + Q.-1(k - 1)], 

(5) bm() = (m - 1)! Q.+I(k + 1), 

where 

Qm+l(X) = 1 E(- - 

is a B-spline. 
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More details on this theorem may be found in [6], [3], [4], [8]. 

2. Construction of Approximate Spline Solution. Consider 

(6) Y" = f(X, y) 

where f: [0, B] X R -* R is a sufficiently smooth function. We attach to Eq. (6) the 
Cauchy conditions 

(7) Y(0) = Yo, y'(0) = Y10. 

Suppose the function f satisfies a Lipschitz condition with constant A: 

(8) If(x, y) - f(x, Y)I < Aly - YI, V (x, y), (x, Y) E [0, B] X R. 

Under these conditions there exists a unique solution y of (6}-(7). Let [0, b] be 
its domain. 

Following the idea of [3], we construct a polynomial spline function of degree m 
(m ? 3) to approximate the exact solution y of (6)-(7). 

Let n > m be an integer, h = b/n and B: [0, b] R the spline function of degree 
m and class Cm'- with knots x = h, 2h, * , (n- 1)h. The first component of 6 

on [0, h] is 
(9) = ... y~~~~m~~l)(0) M +m~ ao in ~ ) O(X) y(O) + y'(O)X + + ( 1)! X < h, 

where the coefficient ao is as yet undetermined. We determine ao by requiring that 
0 satisfy (6) in x = h. This gives us 

V"(h) = f(h, B(h)) 

which determines ao. Now, if the polynomial (9) is determined, define the spline 
function 0 on the next interval [h, 2h] by 

~(x) = , 0 (h)(x-h) + (x -h)m h x < 2h, 
j=0 I! 

where a, will be determined such that 0 satisfies Eq. (6) in x = 2h, i.e., 6"(2h) = 

f(2hg B(2h)). 
Continuing in this way, we obtain a spline function satisfying 

V"(kh) = f(kh, B(kh)), k = 0, ... n. 

THEOREM 2. If h < (m(m - 1)/A)1/2 then the spline function 0 given by the above 
construction exists and is unique. 

Proof. On the interval [kh, (k + 1)h] we define 
rn-I ~'(k h) +ak 

a 

o(x) = (x - kh)' + - (x - kh)mt- A,(x) + - (x - kh)m, 
(1 0) j=O I!M 

x G [kh, (k + l)h], k = O.0, n - 1. 

Ak(x) is known by continuity conditions. Let us prove that ak may be uniquely 
determined from 
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Replacing B in (11), we get the equation 

(m - a)! hfF 
(12) ak= m-2 )f (k + 1)h, Ak((k + 1)h)+ ak A'((k + )h = gk(ak) 

for the unknown ak. 
Define Gk: R -* R by ak -_ gk(ak ), ak E R. We show that under the conditions 

of the theorem, operator Gk is a contraction thus having a unique fixed point. 
Let a' , a2 E R, and their distance p(a', a2) = a' - a21. 

According to the Lipschitz condition (8), it follows that 

p(Gk(ab), Gk(ak)) = gk(ak) - gk(ak) a h a k k I Mal) 
~~-m(m - )p(aa) 

If h2A/m(m - 1) < 1, Gk is a contraction operator and Eq. (12) has a unique 
solution. This completes the proof. 

THEOREM 3. The values 6(jh), j = O. * , n, of the spline function constructed above 
are precisely the values furnished by the discrete multistep method described by the 
recurrence relation 

m-1 ~~~~m-1 ~~~~~2 ~'(in) 2 (m1 (13) z: C1 Yi-m+k+l h L b, Yj-m?kcl X k = m - 1, , 
i=O i=O 

where coefficients cam), bum) are given by (4), (5), if the starting values 

(14) Yo = 0(0), yi = B(h), . , Ym-2 = B((m-2)h) 
are used. 

Proof. For h < (m(m - 1)/A)1X2, only one sequence {yj, Ij = m - 1, , n, 
satisfies relation (13) with starting values (14). By the consistency relation (2), the 
sequence B(jh), j = m - 1, , n, satisfies (13) and obviously has starting value (14). 

Thus the values 6(jh), j = m - 1, , n, must coincide with the values yj, 
j = m - 1, ... , n, generated by the corresponding multistep method. 

Theorem 3 tells us that the approximate spline solution of degree m yields the 
same values as the discrete method of (m - 1)-steps on Xk. 

In the sequel, we shall be concerned with estimating the error of approximation 
of the solution of problems (6)-(7) by splines as well as with convergence of the 
approximation 6 to the exact solution y for h -O 0. We now define the step function 
6 at the knots Xk = kh, k = 1, , n-1 (see [4, p. 437]) by the usual arithmetic 
mean: 

(1 5) 6(m(Xk) = 2 [0 (X - 2 h) + (m)(Xk + Uh)], k = 1, * , n - 1. 

LEMMA 1. If 6(Xk) - y(xk)l < Kh' and 3"(Xk) = f(xk, 3(xk)) then there exists a 
constant K2 such that 

I0(Xk) - y(Xk)I < K2h` and I3"(Xk) -y"(Xj)j < K2h". 

Proof. Applying Lipschitz condition (8) it follows that 

Ij"(Xk) 
- 

Y"(X,) = 
ff(Xk, 0(xJ)) - f(xk, Y(Xk))l < AI|(Xk) - y(xj)I < AKh 

We can take K2 = max {K, AK}. 
LEMMA 2 (LoSCALZO-TALBOT [4, p. 438]). Let y C cm+ [0X b], and let B be a spline 
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function of degree m having its knots at the points Xk, k = 1, * * , n - 1, and such that 
the conditions 

(16) 16'(r)(xk) - yT) (xJ)I= O(h r), r = 0, , m - 1, k = 0, , n - 1, 

(17) 1(m) (x) y (m)(x)I (h), Xk < X < Xk+l, k = O.. , n - 1 

are satisfied. Then, 

(18) I (x) -y(x)I = 0(h") 

where 

(19) p= min (r + Pr) (Pm 1) 

and furthermore 

(20) I ( (x) - y(m)(x)I = O(h), x ( [0, b]. 

In what follows we study the approximation of a solution by spline functions of 
degree m = 3 (cubic) and m 4. For brevity we denote Xk = kh, Yk = Y(Xk), Yk = 

Y'(Xk) Yk = Y"(Xk) (k = 0. , n), and analogously for B(Xk), 0'(xk), 0"(xk). 

3. Cubic Spline Functions Approximating the Solution. Theorem 1 gives, for 
m = 3, 

Bk+l 
- 20k + Bk-1 = 'h 2(0kj + 4V' + k-J1), k = 1, , n - 1. 

By Theorem 3 the cubic spline function yields the same values on the knots as the 
discrete multistep method based on the recurrence formula 

(21 ) Yk+1 - 2Yk + Yk-1 = 6h 2(yk +1 + 4y' + Yk-1) 

= 'h2[f(Xk+l, Yk+l) + 4f(xk, Yk) + f(Xk-1, Yk-1)] 

if starting values yo and Yi = 6(h) are used. 
The multistep method (21) has the degree of exactness three, provided that starting 

values yX, y, have third-order accuracy (see [2, p. 295]). 
LEMMA 3. Let m = 3. Then there exists a constant K such that IL(h) - y(h)l < Kh3; 
Proof. From the developments 

h2 h3 
B(h) = yo + hyO ? - Y?' ? - aO 2 6 

y(h) = Yn + hy' + h2Yit + h /it + h 0()t 0< t < h, 0 2 0 6 24 

we have 

(22) L(h) - y(h)I = -h31(ao - y'")- - hy'4) I 

The proof of the lemma is reduced to showing that ao is uniformly bounded as a 
function of h. From (12), it follows that, for m = 3, we have 

(23) go(ao) = [f h, + hy + 2 , 7 + ao) - Y,] 



DIFFERENTIAL EQUATION WITH SPLINE FUNCTION 811 

The function g0(u) is a contraction if h < (6/A)"2. 
In particular for h < (1/A)"2, we have 

1g0(u) - g0(u2)1 < -6u1 - u21, uI, u2 C R. 

Taking u, = ao, u2 = 0, we obtain 

jgO(aO)j - jgo(O)j -< Igo(ao) - go(O)l < 6iaol. 

But go(a0) = ao, so that Ia0j -go(0)I < 6ja0I implies 

(24) -a6<w~o? 

From (23), (24), it follows that 

go () = 1 
-, Yo + hy' + 2w 

i 
Yf = h ly"(h) + 0(h3) - 

h \Y +2 0/ - h 

__1 
- h ly' + 0(h)-y'lT < M 

for some constant M. Since uniform spacing is required over the interval [0, b], there 
is only a finite number of possible values of h between (1/A)"2 and (6/A)"2, so that 
ao is uniformly bounded for all h < (6/A) 12, and the proof of the lemma is completed. 

On the basis of Lemma 3 and by the fact that the multistep method (21) has the 
degree of exactness three, the following relations hold: 

(25) 0(Xk) = y(xk) + 0(h 3), f 
(Xk) = y (xk) + 0(h 3). 

The last relation results from Lemma 1 for p = 3. 
LEMMA 4. Let y C C4[O, b] and assume Xk ,Xk+1 = Xk + h to be in [0, b]. If P3 

is the unique polynomial of degree three satisfying the Hermite-Birkhoff interpolating 
condition 

(26) P3(xk) = Y(Xk), P3'(Xk) 
= y (Xk), 

P3(xk+l) = Y(Xk+1), P3f(Xk+l) = Y"(Xk+l), 

then there exists a constant K3 such that 

IP3f"(Xk) - y"'(Xk)I < K3h. 

Proof. If we write the cubic polynomial 

P3(x) = bk + Ck(X - Xk) + dk(x - Xk) + ek(X - Xk) 

then conditions (26) give us 

1 ~~~~~h 
bk = Y(Xk), Ck h [Y(Xk+l) - Y(Xk)] - [Y"(Xk+l) + 2y"f(xk)], 

h 6 

dk = 2Y (Xk), ek =6h [Y"(Xk+l) - Y"(Xk)]= 6Y"(), Xk < t < Xk+ - 

But P3"(x) = P4f"(Xk) = 6ek = y"'(Q). Consequently, 

IP3f(Xk) - Y"'(Xk)l = |Y(0) Y y"(Xk)l = |t - Xk| Iy4 (i)I < K3h, Xk < ?7 < t 

and the proof is completed. 
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THEOREM 4. Iff g C3([o, b] X R) and 0 is the cubic splinefunction approximating 
the solution of problems (6)-(7) then there exists a constant K such that, for any h < 
(6/A)1/2 and x C [0, b], 

I0(x) - y(x)I < Kh3, I0'(x) - y'(x)I < Kh2, 

I,"(x) - y"(x)l < Kh2, I0"'(x)-y"'(x)I < Kh, 

provided ..(Xk) is given by (15) with m = 3. 
Proof. Denote the cubic spline component over [Xk, xk+1] by 

O(X) = bk1" + Ck4(X - Xk) + dk1)(x - Xk) k + 41(x - Xk), Xk < X ? Xk+ 1 

Solving a system similar to (26) for B(x), we obtain 

ek = [(Xk+) - (X = 6 [Y"(Xk+l) - Y"(Xk)] + O(h2) 6h 6h 

- lP3..(xk) + O(h 2) 

since 0"(Xk) = y"(Xk) + O(h3). Now let Xk < x < xk+l. We have B"'(x) = 6e1) and 
Lemma 4 implies 

VI(X) = P31(Xk) + O(h) = y' (Xk) + O(h) = y "(x) + (Xk - x)y (X) + O(h). 

Because Xk - XI< h, we obtain 

(27) V"(x) = y"'(x) + O(h), Xk < X < Xk+l, k = 0, , n - 1. 

Hence, it follows that condition (17) of Lemma 2 is satisfied for m = 3. Since the 
function ."' is constant on (Xk, xk+l), we may write 

Y(Xk+1) = Y(Xk) + hy'(Xk) + 2 h Y (Xk) + 6h 3y"'(), Xk < t < Xk+ 

0(Xk+1) = O(Xk) + h '(Xk) + 2h 2, 
(Xk) + 6h 3,"'(t). 

Substracting we obtain 

I0(Xk+l) - y(Xk+l)I = (Xk) - Y(Xk) + h((xk) - Y'(Xk)) 

+ 1 h2(6'(Xk) - Y"(Xk)) + 6h 3( ) -. 
. 

= O(h4). 

Relations (27), (25) imply that 

(28) 0'(Xk) - y'(Xk) = O(h 2). 

From (25), (28) it follows that conditions (16) of Lemma 2 are fulfilled for m = 3, 
Po = 3, pi = 2, P2 = 3. Note that f C C3([0, b] X R) implies y C C4[0, b]. 

Applying Lemma 2 three times successively, first for 6, and then for 6' and 6", 

the first three inequalities of the theorem follow. The last inequality follows from (20), 
and thus the theorem is proved. 

4. Spline Function of Fourth Degree Approximating the Solution. If m = 4, 
Theorem 1 gives the following consistency relation for spline functions of degree four: 
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zk+l - k - k-l + zk-2 = W12 + + 1Mkk + 11 k-1 + zk-2]b 2 < k < n - 1. 

According to Theorem 3, the spline function of degree four approximating the solution 
furnishes values which, on the knots, coincide with the values of a discrete multistep 
method with the recurrence relation 

h2 
Yk+1 Yk - Yk-1 + Yk-2 12 [Yk+l + lYk' + 11Y-11 + Yk-2] 

(29) 
2 

- 12 (t(xk+l, Yk+1) + ll(Xk, Yk) + 1ll(Xk-1, Yk-1) + f(xk-2, Yk-2)], 

provided that the initial values are yo, Yi = B(h), Y2 = B(2h). 

Multistep method (29) has degree of exactness five, if initial values have the same 
exactness (see [2, p. 295]). 

LEMMA 5. Let m 4. Then, there is a constant K such that 

I (h) -y(h)I < Kh5 and I (2h) - y(2h)I < Kh5. 

The proof parallels that of Lemma 3. The only difference consists in showing that 
a0-y(4) = 0(h). 

From the fact that the discrete method (29) has the degree of exactness five, and 
by Lemma 1 for p = 5, it follows that 

(30) O(Xk) - y(Xk) = 0(h5), V"(Xk) - y"(Xk) = 0(h5). 

LEMMA 6. Let y ( C5[O, b], and Xk, Xk+l = Xk + h belong to [0, b]. If P4 is the 
unique polynomial of degree four which satisfies the Hermite-Birkhoff interpolation 
conditions, 

(31) P4(Xk) = Y(Xk), P4(Xk+l) = Y(Xk+l), P4'(Xk) = y"(Xk), 

P4 (Xk) = Y (Xk), P4 (Xk+l) = Y (Xk+l), 

then there exists a constant K4 such that 

|P4 (Xk) (Xk) I < K4h. 

The proof is similar to that of Lemma 4. 
THEOREM 6. Iff C C4([0, b] X R) and 0 is the spline function of degree four 

approximating the solution y of (6)-(7), then there exists a constant K, such that, for 
any h < (12/A)1/2, andx E [0, b], 

|0(-)(x) y(7)(x)l < Kh5', j = O... , 4, 

provided that B 4 )(Xk) is calculated by (15)for m = 4. 
Proof. On [Xk, Xk+,], we write the spline function of degree four in the form 

0(x) = bk + ck(x - Xk) + dk(x - Xk) + e'(x - Xk) + fk(X - Xk), Xk _ X ? Xk+l 

Since 6 C C3[0, b], it follows by relations (30) that 

(32) .. (Xk) - Y .(Xk) = O(h 4). 
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Solving (31) with 0 in place of P4 we obtain for the coefficient fk: 

f= 
' I 

D"'(Xk+0) 
- 

(X01 24h 

I 
[Y"'(Xk+l) -Y Y"(Xk)] + 0(h3) 24h 

2 4 P4 (Xk) + 0(h3), 

where P4 is the unique polynomial of degree four interpolating the data Yk, Yk+1' 

Yk', Yk/", yk/+ taken from y. 
Now let Xk < X < Xk+l. We have 0(4)(X) = 24fk. By Lemma 6, 

4= P4 (Xk) + 0(h) = y (Xk) + O(h) 

y (4) (X) + (Xk 
- 

x)y (X) + 0(h), X E (Xk, x). 

Since Ixk - xi < h, it follows that 

(33) 4)(x) = y(4)(x) + 0(h), Xk < X < Xk+ l, k = 0, , n - 1, 

so that relation (17) of Lemma 2 is satisfied for m = 4. 
Because ( is constant on [Xk, Xk+1] we can write 

h2 h3 h 4 

y(Xk+l) = y(xk) + hy'(Xk) + 2 Y"(Xk) + 3! Y"'(Xk) + 4! Y Q(), Xk < t < Xk + 

0(Xk+l) = 0(Xk) + h '(Xk) + h V(Xk) + h h4(Xk) + 0) 
2 3!~~"@~ 4! 

I(xk+l) - Y(Xk+l)l 

= 0 - y(Xk) + h(V'(Xk) - Y'(Xk)) + 2 (V"(Xk) - (Xk)) 2 

h3 h4 (~(4) + 3! 0 ..(Xk) - y"'(Xk)) + -4(!() -y(4 )) = 0(h5). 

Relations (30), (32), (33) imply that 

(34) V'(Xk) - Y'(Xk) = O(h 4), k = 0, ** *, n. 

Relations (30), (32), (33), (34) show that the conditions of Lemma 2 are satisfied 
for m = 4, pO = 5, pi = 4, P2 = 5, p3 = 4. Obviously, from f C C4([0, b] X R), it 
follows that y E C5[0, b]. 

Applying Lemma 2 for 6, then successively for 0', B", B"', the theorem follows 
with the last relation coming from (20). 

The method of approximating the solution of problems (6)-(7), by a spline func- 
tion, given here for m = 3, 4, has the advantage over the discrete method that it 
gives a global approximation of the solution, is convergent and also permits the 
study of the behaviour of the derivatives of the approximate solution. 
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5. Instability of the Method for Splines of Degree ? 5. 
THEOREM 7. The approximate spline solution is divergent if h -- 0, for m _ 5. 
Let 

rn-1 

p(Z) =ZE Ckm Z 
k =O 

be the so-called characteristic polynomial attached to the discrete multistep method 
(13). By the theorem of Dahlquist [2, Theorem 6.1, p. 300], the discrete method (13) 
is stable only if the zeros of polynomial p(z) do not exceed unity in modulus. Multiple 
zeros are not allowed to have greater multiplicity than 2. By (4) and taking into account 
the properties of the B-spline (see [3, p. 19]), it follows at once that 

m-1 
p(z) = E (m - 1)! Qm(k + 1)zk 

k-O 

= (m - )(z - 1)2{Zm-3 + (2m-2 - m + )Zm-4 

+ [3m-2 - (m - 1)2m-2 + (m l)(m 2)] m + + 1} 

= (m- _)(z - 1)2pl(z). 

If we denote the roots of Pi by Z3, Z4, * , ZM-, then 
mn-1 

m2 
LZk = m- 1 -2- 

k=3 

Hence, it follows that 
m-1 m-1 

E IzkI _ Zk = 2m`2- m+ 1 > m-2 if m > 5. 
k=3 k=3 

If we set ZM = maxk IZkI, then 

(m- 3)ZM > m-2 or ZM > (m-2)/(m- 3) > 1 if m > 5. 

Thus, the multistep method and, hence, the corresponding spline solution are 
divergent. 
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